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The mechanisms of coherent tripole formation from unstable shielded circular vortices 
are analysed in the context of two-dimensional incompressible flows. Three stages are 
identified during the transformation process : the linear growth of the initial normal 
mode perturbation, its nonlinear amplification and the finite-amplitude saturation 
under the tripolar form. We give a geometrical discussion of the mutual influence of 
the core vortex and of the satellites generated from the shield. The role of the angular 
momentum in determining the finite amplitude saturation is demonstrated using a 
simple elliptical model of the core vortex associated with two point-vortex satellites. 
The long-time asymmetric breaking of the tripole into a dipole and a monopole is 
shown to be driven by the erosion of the core vortex by stripping and diffusion. Finally 
the influence of bottom topography on tripole formation is considered, providing a 
rich phenomenology when the height of the topography is varied. 

1. Introduction 
In recent years, fine-scale studies of two-dimensional turbulence have borne out 

the primary contribution of long-lived coherent vortex structures to the dynamics 
of two-dimensional flows described, e.g., by the works of Basdevant et al. (1981) 
and McWilliams (1984). In most cases, the vortices are monopolar structures with a 
quasi-circular or elliptical shape transported and deformed by the velocity field due to 
other vortices. However, in a few but significant cases, the vorticity has been seen to 
condense into multipolar structures such as dipoles and tripoles (Legras, Santangelo 
& Benzi 1988). 

The need immediately arises to determine the origin and the stability of these 
multipoles in isolation as well as in the presence of a large-scale deformation field. It 
has been demonstrated analytically (Flierl 1988) and numerically (Gent & McWilliams 
1986) that the existence of an opposite-sign annulus around a circular vortex (hereafter 
dubbed ‘shielded’) may give birth to intense barotropic instability of azimuthal mode 
2, leading to breaking into two dipoles. More recently, laboratory experiments (van 
Heijst, Kloosterziel & Williams 1991) and numerical simulations (Carton, Flierl & 
Polvani 1989; Orlandi & van Heijst 1992) have recorded many circumstances in 
which this process can nonlinearly stabilize to produce a stationary tripolar vortex 
with distributed vorticity. For their part, Polvani & Carton (1990) have exhibited 
the shapes of constant-vorticity tripolar steady states and numerically shown their 
robustness. 
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The present study gives a dual description and analysis of the transformation of 
a shielded monopole into a tripole: on the one hand, the flow is separated into the 
axisymmetric component and into the azimuthal deviation with their self and mutual 
interactions ; on the other hand, the vortex structure is decomposed into a core and 
a shield, later to form two satellites, the geometrical features and vorticity exchanges 
of which are detailed and quantified. The basic profile and the numerical methods 
are described in $2. 

The time evolution of the instability splits into three stages. First, the linear growth 
of the perturbation ($3) is characterized by an invariant structure of the eigenmode 
which folds the outer annulus and concentrates the peripheral vorticity into two side 
lobes. In the following stage @4), the external poles exert a strain on the central region 
resulting in vorticity strands being pulled away from this latter and wrapped around 
the side lobes. This initiates a positive feedback loop which amplifies the instability. 
The radial shape of azimuthal mode 2 is altered, and harmonics are generated. Section 
5 describes the saturation process during which the core vortex and the two external 
satellites align themselves. At the same time, the external strain decreases owing to 
the absorption within the satellites of opposite-sign vorticity strands, coming from 
the core vortex. The tripole has acquired its quasi-invariant rotating configuration 
with a nonlinear functional relation between vorticity and stream function. In $ 6, an 
elliptical-vortex model is used to study under which circumstances the instability leads 
to breaking into two travelling dipoles instead of stabilizing as a tripolar structure. It 
is shown that the governing parameter is a conserved quantity, the angular momentum 
of the vortex. 

A new phenomenon is presented in $7:  after a long life-span, the tripole is 
subjected to an asymmetric instability during which the core vortex and one satellite 
pair together while the other satellite remains isolated. This event is conjectured to 
stem from the instability of the vorticity ring which is built at the periphery of the 
tripole by repeated stripping of the core vortex. An analytical model with variable- 
strength point vortices is developed to reproduce this instability. The whole process is 
crucially dependent on how vorticity diffuses across the high-vorticity gradient which 
encircles the core vortex. Finally, we discuss in $ 8  the influence of an axisymmetric 
topography on the tripole formation. Discussion and further conclusions are offered 
in $9. 

2. Model and initial conditions 

periodic domain. The governing vorticity equation is 
We consider a two-dimensional incompressible barotropic flow in a 2x x 2x bi- 

where i = V 2 v  is the vorticity, y the stream function, and J ( ) is the two-dimensional 
Jacobian operator. The orography q vanishes except in $8. Dissipation is provided 
by the right-hand-side hyper-viscosity operator which is a numerical device to get rid 
of the enstrophy carried towards small scales of motion. The value of v, is chosen in 
order to yield a dissipative range with exponentially decreasing spectrum as close as 
possible to the numerical cut-off. 

This equation is discretized on a square grid with resolution N ,  = N y  equal to 128, 
256 or 512. The spatial derivatives are exactly computed by Fourier transforms (using 
the well-known pseudo-spectral method) and the time advection is either a mixed 
Euler-leapfrog scheme or an Adams-Bashforth scheme. The time step is At = 0.1 for 
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a spatial increment Ax = LJ128, and varies as (Ax)-' when the resolution increases 
according to the Courant-Friedrichs-Lewy stability condition. The hyper-viscosity 
has order n = 4 at resolutions 1282 and 2562, and order n = 8 at resolution 5122. The 
dissipative coefficients are respectively v4 = 5 x lop8, v4 = lop8 and v g  = 1.5 x 10-l8. 

The initial flow consists in a perturbed axisymmetric vortex with zero total circu- 
lation. We choose the basic axisymmetric distribution among the family described 

cE = (I - zra) exp(-ra). 

This vortex has a cyclonic core surrounded by an anticyclonic ring 7 and its am- 
plitude decays exponentially for large r. By integrating rexp(-r") by parts, using 
(d/dr)exp(-r") = - a F 1  exp(-r'), one easily sees that the total circulation is zero for 
any a. Owing to these properties, the vortex has finite energy and angular momentum. 
The grid size L, = Ly = 27t is sufficient to consider a shielded vortex as isolated, 
since its total circulation vanishes rapidly with increasing r. By linearizing (2.1) (with 
q = R = v = 0) near c,, we get the Rayleigh problem which has been studied by 
Carton et al. (1989). We choose as initial perturbation to the basic profile ta the most 
unstable eigenvector of the Rayleigh problem which is of the form 

(2.3) 

by 

(2.2) 
a 

c'(r, 0) = Re [Z(r) eiee] . 
This initialization has a robust physical basis: if instead of a normal mode, we use 
a small-amplitude white-noise initial perturbation, the pattern of the most unstable 
mode soon dominates the growing perturbation (Orlandi & van Heijst 1992). The 
calculation of the eigenmodes is numerically achieved with IMSL routine EIGZF, 
with enough nodes in the radial direction to match the asymptotic solution of Gent 
& McWilliams (1986) at large r (i.e. y' N Re[r-l ei18]) which is used as boundary 
condition. 

Carton et al. (1989) found that the profile cE becomes unstable for a > 1.85 and 
perturbations with azimuthal wavenumber t = 2. They showed that 8 = 2 is the most 
unstable wavenumber for a < 6.0. In the tank experiment of van Heijst et al. (1991), 
the core of the initial vortex apparently follows a Gaussian profile for the stream 
function (i.e. it satisfies (2.2) with a = 2) but their data are not accurate enough to 
determine the aisle of the profile which is a crucial paramater as we shall see below. 
Orlandi & van Heijst (1992) found that the instability of the profile 1 2  leads to a 
tripole somewhat less elongated than that observed in tank experiments. As in Carton 
et al. (1989) we choose instead to focus here on the case a = 3 which seems more 
representative of tripole dynamics and also produces patterns that closely resemble 
the tripoles in a laboratory rotating tank. The e-folding time of the most unstable 
mode is then z = 13.03. 

The maximum amplitude of the perturbation stream function is 0.001 for the 
experiments in 1282 and 2562 and 0.01 for the experiment in 5122, corresponding 
respectively to 0.015 and 0.15 for the maximum amplitude of the vorticity perturbation 
of the basic profile c3. The two lower-resolution experiments start at t = 0. Owing to 
its stronger initial perturbation, the high-resolution experiment is considered to start 
at t = 30. 

Figure 1 shows a series of vorticity charts taken during the evolution of the vortex 
from the perturbed axisymmetric structure to a well-developed tripole by the end 

t Here cyclonic means anticlockwise rotation while anticyclonic means clockwise rotation, a 
situation arising on a rotating device with positive angular velocity 
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of the experiment. The following sections discuss the three stages of this evolution: 
linear stage, nonlinear amplification and nonlinear saturation. 

3. Linear instability 
If the amplitude of the initial perturbation is chosen of the order of one-hundredth 

of that of the basic axisymmetric profile, the first stage of the evolution is linear. 
Figure 2 shows the vorticity distribution of the most unstable mode obtained from the 
resolution of the Rayleigh equation with a basic profile 4 = 4 3 .  The zero amplitude 
line of the perturbation closely corresponds to vanishing at /&,  is .  to maximal 
anticyclonic mean shear in the outer region, while the perturbation reaches maximum 
amplitude near the zero vorticity line of the basic profile. An anticlockwise shift of 
the four external poles with respect to the internal ones is required, as we shall see 
shortly, to satisfy the instability condition. 

These features are the axisymmetric analogues of the properties of unstable modes 
for parallel flows seen from the point of view of vorticity dynamics (Hoskins, McIntyre 
& Robertson 1985, see also Flier1 1988). Here, each positive (respectively negative) 
pole induces a cyclonic (resp. anticyclonic) circulation in its vicinity. Thus the phase 
shift is such that each internal positive (resp. negative) pole is submitted to an outward 
(resp. inward) flow induced by the external poles. This motion reinforces both the 
internal and external poles which are immersed within a region of negative (resp. 
positive) outward gradient of the mean vorticity profile. The e8ect is maximum when 
the external and internal poles are in quadrature. In addition, the coupling between 
internal and external poles induces a differential angular rotation which goes against 
the natural tendency of the two systems to rotate in opposite directions. The effect 
is then maximum when the internal and external poles are in phase. This is the 
situation at critical a when the growth rate is marginal. For supercritical values of 
a, the poles of the unstable eigenmode are located such that the differential rotation 
rate vanishes and the perturbation amplifies. The fact that the external poles of the 
perturbation are entirely contained within the region of positive vorticity gradient 
shows how important the knowledge of the aisle of the basic profile is to determine 
its stability properties. 

When a increases from its critical value, it can be shown (see Carton 1988) that 
the most unstable mode has its peak amplitude at decreasing radii, from Y = 1.2 
for a = 2.0 down to r = 0.8 for a = 4.0, while the phase shift between internal 
and external poles increases from d 4  = 0.2 to 84 = 1.0. This is in agreement 
with the inward displacement of the maximum jet located at r = rl = (l/x)'/' 
with value U,,, = ;(em)-'/" and of the maximum anticyclonic shear located at 
r = rz = (1 + l/sc)'/" with value A,,, = - k ( l + l / a ) .  

The stability properties are thus related to the increase of the maximum shear with 
a. Notice also that the steepness of the vorticity profile <a can be measured, for 
instance, by its slope where the basic profile vanishes, that is -ia2e-2/G(. Since this 
quantity increases in absolute value as a increases, we see that the separation between 
the core and the exterior ring decreases. As a result, the coupling between the internal 
and the external perturbations of vorticity contours is an increasing function of a. 
For subcritical values of CI, the phase locking between the external and the internal 
perturbations cannot be maintained, thus the vortex is stable. 

A simple model of tripolar instability can be obtained by considering an initial 
axisymmetric vortex with piecewise uniform vorticity in four concentric regions : 
q = 40 for 0 < r < a, q = 41 = -q0a2/(c2 - b2)  for b < r < c, with a < b, and zero 

2 
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..... 

FIGURE 1. Vorticity maps from the 5122 experiment at various times. Contour interval 0.05. Solid 
contours for positive vorticity and dashed contours for negative vorticity. The frame is centered and 
shows of the periodic 2n: x 2n: box. (a) t = 30 (2.32); ( b )  t = 40 (3.077); ( c )  t = 55 (4.222); 
( d )  t = 70 (5.372); ( e )  t = 85 (6.522); (f) t = 100 (7.672); ( g )  t = 107 (8.212); ( h )  t = 120 (9.212); (i) 
t = 140 (10.742); ( j )  t = 160 (12.282); ( k )  t = 195 (14.977) and (1) t = 230 (17.652). Figure 8 shows 
the vorticity profile along the section. 

x 
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FIGURE 2. Vorticity distribution of the most unstable mode for the basic profile 4 = 4 3  and e = 2. 
The amplitude is arbitrary. 

vorticity in the annulus a < r < b and the exterior region r > c. This vortex has 
zero total circulation and a radial velocity profile V ( r )  given in (A 1). For a = b, it 
is known (Flier1 1988) that this profile is unstable to azimuthal wavenumber L = 2 
perturbation for i c  < a < c. This instability does not saturate as a tripole but yields 
a pair of dipoles. The calculation of the characteristic equation for the more general 
case a < b is given in Appendix A. Figure 3 shows the resulting stability diagram in 
the (a/c, b/c)-plane. 

A quantitative comparison with the profile f ,  is possible by fitting the relevant 
characters of the discrete and the continuous profiles. By requiring that the two 
profiles have the same maximum velocity at the same position, we obtain the two 
relations a = (l/a)"' and 40 = e-"'. By further imposing the same vorticity where the 
shear is maximum, we obtain 41 = -;(a - l)e-('+'',). The boundaries b and c of the 
external annulus are then determined by requiring equal angular momentum, giving 
2 J: r3C,(r) = q0a4 - 41(c4 - b4), and zero total circulation, giving 41 (c2 - b2) = qoa2. 
Finally, by rescaling a and h by c, we obtain a curve (a/c, b/c) as a function of a 
which is appended to the stability diagram on figure 3. It turns out that this curve 
intersects the stability boundary for a = 1.65, within less than 11% of the true critical 
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value, a striking result considering the crudness of our approximation which suggests 
that the instability is characterized by only a few global measures of the flow. 

Figure 4 shows, on a log-linear scale, the evolution of the amplitude of the 
dominating azimuthal modes at the intermediate resolution 2562. Here the modes 
are defined irrespective of the solution of the Rayleigh problem. For any azimuthal 
wavenumber e, we have 

{Ce(r ) ,  &(r)} = 1 1 y'(r ,  B){cos t o ,  sin t o }  do, 
27t 

7t 

and 
1 rmx 

& = - 1 [ C j ( r )  + Sj(r)r  dr]' , 
rmax 

with rmax = 7t. It is apparent that the period of exponential growth of the most 
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FIGURE 4. Evolution of the main components of the azimuthal mode decomposition of the 

perturbation. See definition of the amplitude A! in the text. 

unstable mode L = 2 lasts up to t m 32. During this period, we observe that 
the perturbation simply grows in amplitude without changing shape. The vorticity 
distribution at t = 3.072 is shown in figure l(h). The measured e-folding time of mode 
/ = 2 between t = 0 and t = 2 is slightly smaller, by 6 %, than the theoretical linear 
value 2.  Nonlinearities are inducing the development of other harmonics: modes 
/ = 0,4,6 grow with an e-folding time of 0.72 and at t = 32 the first two reach an 
amplitude ratio 1:4.5 with the main mode. Mode L = 1 and other odd modes (not 
shown) grow out from numerical noise but remain of very weak amplitude. There 
seems to be very little feedback effect onto mode L = 2 during this stage. This is 
further confirmed by the fact that the high-resolution experiment (in 5122) which 
begins at time t = 2.32 with a purely linear perturbation closely follows the evolution 
of the other two, as is shown below. 

4. Nonlinear amplification 
From t = 32 to 5.52 (see figure lc,d), the perturbation amplifies in the outer region 

where it generates two well-defined anticyclonic satellites while the cyclonic core 
progressively becomes more elongated. A detailed visual inspection reveals that the 
two satellites are growing by entrainment and wrapping of the exterior anticyclonic 
vorticity around the two outer centres which have emerged from the linear instability. 
Each of these two centres induces around itself an anticyclonic flow which decreases 
with distance. Hence, the cyclonic core vortex is submitted to a strain field the 
dilation axis of which is rotated by 45" with respect to the line joining the satellite 
centres. It is known (Kida 1981) that a top-hat vortex undergoes strong vacillations 
when it is abruptly submitted to a strain. On the contrary, we observe here that the 
core evolves in a monotonic way with very weak phase vacillations and stays close 
to the instantaneous equilibrium position which would imply exact alignment of its 
small axis with the satellites. Such a quasi-adiabatic evolution is often observed for 
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distributed vortices. This effect has been recently analysed by Legras & Dritschel 
(1993b) in the case of a slowly growing shear. 

The total strain felt by the core vortex combines an internal contribution y i  due to 
the elongation of the core and an external contribution y e  due to the satellites. We 
can separate these two components by using the method described in Appendix B. 
Figure 5 shows yi  and y e  as a function of time for the high-resolution experiment. 
The internal strain undergoes large variations which are perfectly correlated with 
the vacillations of the aspect ratio of the core vortex. The external strain displays a 
quiescent evolution, growing until t = 5.52 and slightly decaying later on towards a 
quasi-stationary regime with superimposed oscillations. Although the external strain 
is smaller than the internal strain, it is solely this component which is able to change 
the aspect ratio of the core vortex, since the internal contribution can only induce 
rotation. The maximum value of the external strain is, indeed, about 75% of what 
is necessary to completely tear out the core vortex. However, the variations of the 
aspect ratio also depend on the angle A+ between the core vortex and the external 
strain. The relevant quantity is yf = y,sin2A+: the aspect ratio increases when y f  is 
positive and decreases when it is negative (Legras & Dritschel 1991). Figure 5 shows 
that the estimated y f  is, indeed, closely correlated with the temporal derivative of the 
measured aspect ratio for t > 82. The lack of agreement near the first maximum of 
the aspect ratio is due to the fact that our diagnostics only considers the strain at 
the centre of the vortex while a very elongated core may be submitted to significant 
variations of the strain along its major axis. 

In turn, the rotation of the core vortex depends on the sum of its own contribution 
and that due to the external strain. Under the approximation of a uniform aspect 
ratio, the former can be estimated as Qi = ool/(l + A*) while the latter is 52, = 
-ys( 1 - A 2 ) / (  1 + 12) cos 2(+ - +s). These two opposite tendencies are shown in figure 6 
where their sum is compared to the observed rotation of the core vortex 52(t). Our 
approximation tends to slightly overestimate the rotation rate and there are also 
spurious oscillations during the linear stage. We see that both internal and external 
components decrease in absolute value as the aspect ratio increases from t = 0 to 
t = 6.72 but their sum only varies weakly. Since the rotation of the satellite also 
decreases when the aspect ratio of the core increases (see 9 6), the core rotates faster 
than the satellites. At t = 6.72, the main axis of the core is orthogonal to the satellites 
and the aspect ratio reaches a maximum. It can be seen from figure 2 that all the 
perturbation modes reach their maximum amplitude at this time. 

Within a framework rotating with the core vortex the instantaneous stream function, 
shown in figure 7 at t = 5t, exhibits two critical saddle-points where the velocity 
vanishes. Two pairs of separatrices emanate from these points isolating a centre 
region, which basically corresponds to the core, from the two lobes containing the 
satellites. As the instability develops, the motion of the critical points is governed by 
two opposite tendencies: an inward motion directly due to the increasing external 
strain and an outward motion due to the increasing elongation of the core. Indeed, 
it is observed for tl = 3 that the location of the critical points varies weakly during 
the generation of the tripole, staying at distance r = 1.2(+3'/0) from the centre. Since 
the core is rapidly elongating under the action of the external strain, new vorticity 
contours of the core are continuously crossing the saddle-points. Hence, vorticity 
strands are entrained within the satellites where they wrap at increasing distance 
from the centre as time proceeds. The spiral structure which is visible in rotating tank 
experiments (van Heijst et al. 1991) or in our numerical experiment (see figure 1 and 
figure 8) is a direct consequence of this dynamics. 

3 F L M  261 
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FIGURE 5. (a) Internal and external strain, and deformation term as a function of time. (b)  Time 
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FIGURE 7. Stream function at t = 5.372 in a framework rotating with angular velocity SZ = 0.0715. 
The separatrices which cross at the two saddle points are shown by dashed lines. 

By entraining more anticyclonic vorticity, the satellites grow in intensity and, 
consequently, the strain also increases over the central region (see figure 5 )  completing 
the positive feedback loop which causes the nonlinear amplification of the tripole. 

The existence of saddle-points linked by separatrices (see figure 7) is known in the 
literature on dynamical systems to be a structurally unstable situation which leads to 
chaotic trajectories when an external perturbation (even periodic) is applied (see e.g. 
Beigie, Leonard & Wiggins 1992). Since vorticity is entrained along the separatrices, 
we may wonder why we get a stable pattern instead of chaos. The reason lies in the 
outward motion of the external separatrices. As the core gets more elongated, the two 
lateral lobes also increase in size; the vorticity initially located near the separatrices 
can therefore be entrained into the lobe where it forms the spiral mentioned above. 
During this stage, no vorticity is reinjected in the vicinity of the saddle-points, no 
amplification of the fluctuations can take place and the evolution remains predictable. 

5. Finite-amplitude saturation 
After t = 6.72 (see figure le) the aspect ratio of the core vortex decreases abruptly. 

The underlying mechanism is that decreasing the aspect ratio induces an increase of 
3-2 
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the angular rotation of the core vortex which, if it is not compensated by the faster 
rotation of the satellites, leads to further decrease of the aspect ratio. Indeed, we 
observe here that the rotation of the core vortex accelerates and that at t = 8.32 (see 
figure lg  and figure 9) the core undergoes a complete turning-over. A similar event 
occurs at t = 9.82 after the core has again passed through the orthogonal position 
to the satellites at t = 8.82. We see that the second maximum of the aspect ratio (or 
equivalently y z )  is much weaker than the first one. These two complete rotations of 
the core are followed by oscillations, with average period T = 2.22, during which the 
core vacillates around an apparent equilibrium position with the satellites. 

The vacillations of the core vortex bear strong similarities with the oscillations of 
an ellipse immersed within an external uniformly rotating strain field (Kida 1981) 
and initially released out of its equilibrium position. There are, however, noticeable 
differences in the fact that the rotation of the strain field (i.e. of the satellite) is here 
modulated by the aspect ratio and the orientation of the core and that the intensity 
also depends on the amount of material which has crossed the critical points and has 
been absorbed in the satellites. 

In this respect, we observe that as early as t = 4.22 (see figure lc)  the critical 
points cross the zero vorticity line. Henceforth, positive vorticity is expelled from 
the core vortex, forming two streamers around the two satellites near the exterior 
separatrices. This absorption of positive vorticity within the two satellites reduces 
their total circulation in absolute value and in turn reduces the external strain on the 
core vortex. It takes, however, some time for the two positive streamers to develop 
and the feedback effect onto the core is not immediately felt. We see on figure 5 that 
the external strain increases until t = 52  and then decreases while the core reaches 
its maximum elongation. Assuming that the core then overshoots its equilibrium 
position with the external strain, the simultaneous decrease of this latter drives the 
core even further away from equilibrium and induces the observed fast tumbling. 

While the core undergoes a fast evolution, the two satellites do not exhibit any 
significant variations of their central regions which evolve under a slow internal 
motion. Their periphery is, however, rapidly changing. It is difficult to define a 
rotating framework for the whole system but one can treat the satellites and the core 
vortex separately. The location of the critical points within the framework rotating 
with the core vortex is visualized by the points where the filaments are attached to the 
core vortex. The critical points within the framework rotating with the satellites are 
less easily identified. Their fluctuations allow an exchange of fluid between the two 
satellites as is clearly seen on figure l ( i )  around t x 117. This exchange mainly consists 
in streamers of positive vorticity which are lying near the external separatrices. Notice 
that after t = 12.52 (see figure lj) a part is recaptured by the core vortex. As the 
positive streamers travel around the tripole, the external strain on the core vortex 
varies accordingly. It has a maximum at t = 1 It when the streamers and the satellites, 
located at right angles, add their contribution and a minimum at t = 132 when, being 
aligned, they act in opposite way. 

We see from figure 1 that following the production of the two external cyclonic 
streamers, many vorticity contours are crowding at the periphery of the core vortex. 
The generation of high vorticity gradient is, indeed, a basic consequence of stripping 
(Legras & Dritschel 1993a,b). Figure 8 shows a cross-section of the vorticity field 
at t = 230, as indicated in figure l(l), and compares it to the initial profile 13. The 
sharp boundary of the core vortex produced by stripping is surrounded by a small 
region of low vorticity, corresponding to fluid particles entrained from outside. The 
satellite possess a complicated ‘hairy’ structure which is the trace of the wrapping of 
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FIGURE 8. Solid line: cross-section of the tripole at t = 230 (indicated in figure 11). Dotted 
line: initial profile z3 magnified by a factor 1.09 along the abscissa to account for the elliptical 
deformation of the vortex core. 

the vorticity streamers during their generation. The positive streamers are visible as 
the peaks of vorticity in the two aisles of the distribution. A second zone of entrained 
external fluid lies between them and the satellites. 

The repeated stretching and folding of vorticity filaments when they pass near the 
perturbed critical points is the source of a complex dynamical behaviour (see Legras 
& Dritschel 1993~)  which exhibits sensitivity to initial conditions and induces loss of 
predictibility. By comparing in figure 9 the aspect ratio for the two experiments in 
2562 and 5122, we see that they stay very close during the development stages of the 
tripole, even if the initial conditions of the two experiments differ (see $2). However, 
as time proceeds, the two curves show similar behaviour but they separate up to the 
point, by the end of the record, where oscillations of the core vortex occur in opposite 
phase in the two experiments. The main difference between the two experiments being 
the smoothing of small-scale chaotic filaments and high vorticity gradients which is 
stronger at low resolution, it is reasonable to see these structures as the cause of the 
diverging evolutions. Figure 9 shows, nevertheless, that the global dynamics of the 
tripole measured here by the rotation rate is rather insensitive to the resolution. 

At later times, for t > 187, which have only been explored with resolutions 2562 
and 12S2, the complicated filamentary structure is smoothed by dissipation. The 
tripole exhibits an apparently stable pattern with superimposed damped oscillations, 
which are visible in figure 10 for the aspect ratio of the core between t = 187 and 
t = 767. However, it will be shown in $7  that the oscillations do not really damp to 
zero and that a new instability develops breaking the symmetry of the tripole. Hence, 
the symmetric tripole can only be considered as metastable for our initial condition 
and our value of the dissipation. 

We may wonder whether a truly stationary solution does exist in the vicinity. In 
order to filter out the oscillations, we average the vorticity between t = 172 and 
t = 677 within a framework rotating at the mean angular velocity 52 of the tripole. 
Based on the observed rotation of the core vortex, we obtain 52 = 0.057. The average 
vorticity in the rotating framework, shown in figure 11, exhibits a smooth pattern 
without any filamentary structures. In figure 12 we plot the stream function versus 
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FIGURE 9. Evolution of the aspect ratio and the orientation of the core vortex (measured as the 
orientation of vorticity contour < = 0.8) for the two experiments in 256' and 5122. The angle 
calculated for the former has been shifted by -2.78. The orientation of the external strain in 5122 
is also shown. 
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FIGURE 10. Aspect ratio of the vorticity contour [ = 0.8 between t = 182 and t = 762 for the 
intermediate resolution 25@. 

the vorticity in the rotating framework. The well-defined functional relationship 
demonstrates the stationarity of the average flow. This function is not linear but 
presents a curvy shape for both the core (positive value of 5) and the satellites. It 
does not satisfy the prediction of Montgomery & Joyce (1974) that [(y) must have a 
curvature of opposite sign to 5 but is compatible with the family of relations arising 
from the statistical theory of Robert & Sommeria (1991). It is likely, however, that the 
high mixing which is a prerequisite for the application of statistical arguments is not 
effective here, especially within the corc vortex which has only experienced adiabatic 
transformations without modifying its mean profile. The function also differs from 
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FIGURE 11. The stream function in the rotating framework with angular velocity SL = 0.057 
averaged over the period 172 < t < 672. 

that obtained by Qrlandi & van Heijst (1992) with a = 2. Notice finally that the 
stationary average solution may still be sensitive to the type of viscous instability 
described in $7. 

We have emphasized in this section the role of positive vorticity intruding into the 
anticyclonic satellites during saturation. For values of a closer to criticality, saturation 
of the tripolar instability occurs without this intrusion. Figure 13 shows one sequence 
of views extracted from one experiment with a = 2.5 (see also figure 4 of Qrlandi 
& van Heijst 1992, for the case a = 2). Here the two satellites are entirely formed 
from the ring of negative vorticity and the instability saturates smoothly when the 
core gets to its maximum elongation. It can be shown that the separatrices of the 
stream function in the rotating frame are intersecting the satellites. Thus, exchanges 
of negative vorticity between the satellites occur after saturation of the instability, 
carrying strands of negative vorticity around the critical points. As a consequence, 
the distribution of negative vorticity becomes more axisymmetric, the external strain 
exerted on the core vortex decreases and the critical points move slightly away. As 
the exchange proceeds to its end, the two satellites separate again, reinforcing the 
strain. This is followed by a new intersection of the satellites with the lobes, initiating 
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a new oscillation. Unlike the case a = 3, the elongation of the core vortex closely 
follows the variations of the external strain at any time. 

For c( 2 3.2, the instability does not saturate as a tripole but the core vortex breaks 
in two separate components which both form a pair with one of the satellites. The 
two resulting dipoles escape in two opposite directions. The vorticity patterns during 
and after breaking are very close to those shown in figure 19(h,c) where breaking is 
induced by topographic effects. 

6. A simple model 
Although the dynamics of the tripole exhibits a tremendous complexity, some 

of the basic features can be understood with very simple models. The maximum 
simplification is obtained (cf. van Heijst et al. 1991) by replacing the tripole by 
three point vortices with circulation Tc for the core and Ts for the two satellites. 
In the symmetric situation where the three vortices are aligned, the two satellites 
being located at distance a on both side of the core, the structure rotates steadily 
with angular velocity l2 = (2Tc + r,)/87ca2. The separation a depends on the excess 
angular momentum 9 = 2a2r,. As long as rc/T5 < -5/4, it can be shown that the 
tripole is nonlinearly stable (for a thorough discussion of the dynamics of three point 
vortices, see Tavantzis & Ting 1988). Symmetric oscillations of the satellites around 
the equilibrium position occur with frequencies ,uk = &[-3rs(2rc + r s ) / 8 x 2 a 4 ]  i. 
Notice that for the case of vanishing total circulation, rA = -iTc,  one of the two 
frequencies coincides with the angular rotation. According to van Heijst et al. (1991) 
the angular velocity deduced from the model is 25% greater than the measured value 
in rotating tank. 

The point-vortex model is, however, unable to explain why, depending on the initial 
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FIGURE 13. Sequence of vorticity maps from a numerical experiment with initial profile r2,5 at 
resolution 2562. (a) t = 40; ( b )  t = 80; (c) t = 120; ( d )  t = 160; (e) t = 200 and (f) t = 240. Notice 
the exchange of filaments at t = 140 and bridging between the two satellites at t = 200. Contour 
interval 0.1. Dashed line : negative vorticity. Solid line : positive vorticity. 

profile, the mode 8 = 2 instability saturates as a stable tripole or splits the vortex into 
two separating dipoles, as it does for CI 2 3.2. There is experimental evidence that 
splitting occurs after the formation of the satellites and that it is due to an instability 
of the core. More generally, we know that the two satellites only exhibit weak shape 
vacillations after the generation stage while the core may show strong vacillations, 
whatever the stability of the tripole. 

This leads us to consider a more elaborate model in which the core vortex is replaced 
by an ellipse of uniform vorticity o with area A,  eccentricity a and orientation 6. 
The equations for the evolution of the ellipse and the two satellite point vortices can 
be derived from Legras & Dritschel (1991). If we are only interested in symmetric 
solutions in solid-body rotation with the point vortices aligned with the minor axis 
of the ellipse, the equations are 

where zo = xo + iyo is the complex Cartesian coordinate of one of the satellites, 
IC = Aw/27c, ti’ = rS/27c, r = [ A o / ( l  - 02)]i and lo = ipe‘4, satisfying zo = 
r(50 - oe-*’d[;’), is the location of the satellite in the elliptical coordinate system 
associated with the ellipse. The additional equation (r = 0 is automatically satisfied 
when the satellites are aligned along the minor axis of the ellipse. After elementary 
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FIGURE 14. Curves G(o) for (dotted) J = 5,  (solid) J = 6.7 and (dashed) J = 10. 

manipulations, the system (6.1) reduces to 

with A = -K'/JC. 

In adddition, the system is characterized by its excess angular momentum 

1 + r r 2  
4 3 47cK'/Z012 + AK- 

1 - 0 2 ,  
or 

4 1+a2 
AK 1 - 0 2  

J -- = 4A- 

We can determine the equilibrium value a from A and J by replacing p in (6.2) with 
its expression in (6.3).  Figure 14 shows the curves G(0) within the interval [OJ] for 
A = and different values of J .  For J > J,. = 6.684.. ., two solutions exist which 
correspond respectively to a stable and an unstable fixed-point equilibrium. For 
J < J,, no solution exists. Using the time-dependent equations, it can be shown that 
the point-vortex satellites move away while the core elongates indefinitely. This is, 
within our simple model, the onset of splitting leading to the double dipolar structure. 

To sum up these developments, there exists a limited range of situations, depending 
on the single parameter J for which stationary solutions are possible within the 
framework of our model. As we did in $ 3  for the linear instability we can now 
fit this model to our continuous profile and define a relation J(r) .  Using the same 
argument, we consider that the core vortex is equivalent to a uniform vortex with 
radius r = rl = (l/a)"' and circulation r = 2n so1 r2a(r)dr. If we calculate the excess 
angular momentum of the tripole 3 = 27c sir' r3Ta(r)dr, we can define J by 

2 4  
rtr J(a) = -__. 

It turns out that J is a decreasing function of a and that J = J ,  is obtained for 
a = 3.178.. ., a value which is in perfect agreement with the numerical experiments. 
It is remarkable that this striking result is obtained in spite of the very crude 
representation of the satellites by point vortices. 
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7. Decay of the tripole 
7.1. Description of the asymmetric breaking 

The rotating steady state shown on figure 11 is in fact a metastable stage in the long- 
term evolution of the unstable shielded vortex. After some time, the oscillations of the 
perturbation amplitude, which seem damped in the time-series of figure 10, amplify 
anew, driven by a sharp growth in the mode 8 = 1 disturbance. This asymmetry 
stems from numerical round-off errors in the initial conditions, progressively fed by 
nonlinear interactions (since mode 8 = 1 is linearly stable in a barotropic flow) and 
vorticity diffusion. The results shown in this section have been obtained with the 
lower resolution 1282 and v4 = lop7. 

After t = 187, this low-resolution experiment exhibits persisting oscillations of the 
tripole which are accompanied by shedding of positive vorticity from the core vortex 
each time the tips of the core vortex cross the saddle points. Figure 15 shows a 
complete cycle of one oscillation. We see that after being released outside of the 
tripole, and since the total circulation of this latter is zero, the filaments hardly move 
significantly, nor are they absorbed within the satellite. They are submitted to a 
strong dissipation which is most effective where the radial section is narrower so that 
they rapidly reduce to a patch of positive vorticity located where the initial radial 
profile was broader (see figure 15c). They interact again with the core vortex after 
one half-rotation of this latter (see figure 1%). A small part of the patch is then 
advected along the core edge but the main component joins and reinforces the newly 
emitted filament (see figure 15e,f). It is interesting to notice that the oscillations of 
the core vortex are apparently locked to the rotation period. We conjecture that this 
is due to the modulation of the external strain by the stripped strands. Indeed, the 
strain is maximum when the patches return near the main axis of the core vortex thus 
contributing to maintain the oscillation. The whole process is clearly irreversible since 
the core vortex is continuously eroded but only a small fraction of its circulation is 
carried out during one cycle. Hence, the process can repeat many times. 

First, it permanently 
regenerates the low-vorticity external layers of the core vortex which are stripped 
away during each cycle. Without diffusion, a high vorticity gradient tending to 
infinity would appear on the periphery of the core vortex, adjusting progressively its 
location in order to confine the core vortex inside the internal separatrices (Legras & 
Dritschel 1993b) and to forbid any further stripping. For finite but small diffusion, 
such as in our 5122 experiment with vg = 1.5 x 10-", we have seen on figure 8 that 
the core vortex is indeed bounded by a sharp vorticity gradient. A small amount 
of diffusion occurs across this gradient but vorticity leakage from the core vortex is 
considerably reduced with respect to the high-diffusive case of the 1282 experiment. 
This is also true to a lesser extent for the intermediate resolution 2562 with v4 = lo-*. 
In this latter case, we observe that the oscillations of the core vortex are weaker than 
for the highly diffusive case. 

Secondly, it dissipates the filaments and thus makes irreversible the leakage of 
vorticity from the core vortex towards the exterior of the tripole. Since the excess 
angular momentum JJ cr2dx dy must be conserved, this transfer of positive vorticity 
towards the exterior must be compensated by an outward motion of the two satellites 
and a slowing down of the rotation period. Both effects are observed: the average 
angular rotation decreases by 40% between t = 2 9 ~  and t = 1007 while the distance 
between the centres of the satellites increases by 30%. 

Notice that it has been demonstrated by Swaters (1991) that the viscous (or 

Vorticity diffusion is here instrumental in two respects. 
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FIGURE 15. Sequence of vorticity maps showing a complete cycle of the tripole oscillation in the 
lower resolution 128’ experiment. (a) t = 1200(92.1t); (b)  t = 1240(95.2~); ( c )  t = 1260(96.77); ( d )  
t = 1280(98.2~); ( e )  t = 1300(99.8r) and ( f )  t = 1320(101.37). Contour interval 0.02. 

hyperviscous) decay of a stationary Lamb dipole occurs while maintaining a constant 
radius. It is reasonable to expect that this result extends to the tripole and thus to 
consider that the increase of the distance between the satellites and the core vortex 
only occurs as a consequence of the angular momentum conservation and nonlinear 
vorticity leakage towards the external region. 

The final stage breaks the L = 2 symmetry so far observed. After t = 1232 (see 
figure 16a), the core vortex comes slightly closer to one of the satellites. The patches 
released during the following burst of shedding (see figure 16b,c) show very distinct 
asymmetry with a stronger component on the side of the second satellite. Owing to the 
conservation of vorticity centroid, the core vortex is pushed further towards its closest 
neighbour. Breaking is completed when the returning main strand is advected back 
inside the tripole between the core vortex and the second satellite (see figure 16d,e). 
Then, a strong pairing occurs between the core vortex and the closest satellite which 
rapidly move away from the centroid and the second satellite (see figure 16f). The 
subsequent evolution shows the dipole moving on a circle until a new encounter with 
the now isolated second satellite (see figure 16g). During this interaction, the core 
vortex changes partner and goes away with the second satellite while the first one 
now stays isolated (see figure 16h, i ) .  Later on, this cycle repeats itself many times. 

Figure 17 summarizes the evolution of the tripole by plotting the perturbation 
amplitude of mode L = 1 at time t against its value at time t - 20. After the initial 
instability stage which increases the amplitude to about 0.012, the tripole undergoes 
a series of 16 cycles during which vorticity leaks from the core vortex to the exterior 
and the amplitude grows linearly up to 0.02. The linear growth shows that leakage 
occurs at a constant rate during this period as already suggested by the repetitive 
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FIGURE 16. Sequence of vorticity maps showing the asymmetric breaking of the tripole in the lower 
resolution 12@ experiment. (a)  t = 1600(122.8~); (b) t = 1620(124.3~); ( c )  t = 1640(125.9~); ( d )  
t = 1680(128.9~); ( e )  t = 1720(132~); (f) t = 1760(135.1~); (g) t = 1960(150.4~); ( h )  t = 2000(153.5~) 
and (i) t = 2040(156.6~). Contour interval 0.02. 

appearance of the cycle. Then, vortex breaking occurs abruptly and leads to the limit 
cycle described above with amplitude oscillating around 0.06. 

This evolution does not exhibit the character of a plain instability of the tripole 
with respect to mode G = 1 perturbation. Clearly, the sudden onset of the instability 
near t = 1222 is due to the previous stage of slow convective-diffusive evolution. As 
the intensity of the core vortex decreases by leakage, the ratio of its circulation to the 
circulation of one of the satellites decreases in absolute value. In the case of three 
point vortices, we know from 9 6 that the tripole is unstable when this ratio is smaller 
than 5/4, that is 5 / 8  times the ratio for a tripole with zero total circulation. We 
do not know the corresponding threshold for our continuous distribution but it is 
reasonable to assume that it requires about the same variation of the circulation ratio 
to pass from the initial tripole to the unstable situation. However, by measuring the 
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FIGURE 17. Return map of the amplitude Al  with a delay At = 20 in the lower resolution 12Li2 
experiment. The region corresponding to the metastable tripole is enlarged in the insert. 

angular rotation SZ and the distance d of the satellites, we find that L?d2 decreases by 
less than 5% between t = 182 and t = 1202. Since, in the meantime, the circulation 
of the satellite has also decreased, tending to increase the circulation ratio, it is very 
unlikely that the instability condition gets satisfied. 

Indeed, we implicitly assume here that the positive vorticity released outside the 
vortex does not induce any feedback on the interior motion. This would be true 
if the distribution was perfectly axisymmetric, which it obviously is not. But the 
most important effect to be taken into consideration is that the G = 1 mode of the 
tripole induces a deformation of the external ring of positive vorticity which can in 
turn modify the tripole dynamics. The saddle points of the stream function field, 
which are so important for the erosion of the core vortex, are also able to amplify 
a non-axisymmetric perturbation. Indeed a small displacement of these points can 
considerably deviate the trajectory of a vorticity patch passing in their vicinity as seen 
in figure 16. The simple model described below demonstrates how this effect is able 
to destabilize the tripole. 

7.2. A modified point-vortex model of asymmetric breaking 
It is fairly difficult to model, even simply, the dynamics of the vorticity ring sur- 
rounding the tripole after the erosion of the core vortex. We shall rather adopt here 
the following ansatz: we treat the asymmetric component of the exterior filaments as 
belonging to the satellites and we neglect any effect that does not break the symmetry 
of the tripole. This implies that we do not consider the feedback effect of the exterior 
ring onto the rotation or onto the symmetric oscillations of the tripole. 
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Within this framework we can treat the asymmetric component as resulting from 
an exchange of vorticity between the two satellites when symmetry is broken, the one 
earning positive vorticity being that which is located to the right of the obtuse angle 
formed with its partner and the core (for a core with positive circulation). In order 
to account for this effect, we consider a modified version of the three-point-vortex 
model introduced in $ 3  which takes into account a leakage from one satellite to the 
other depending on their angle with respect to the central vortex. The equations of 
motion in complex z = x + iy coordinates are 

+ 
+ 
+ 

iT1 

.i 
where z,, z1 and z2 are the locations of the core vortex and the two satellites while 
Tc,  TI and r 2  are their circulations. The variation of the circulation of the satellites 
is described by the following heuristic equation: 

where a is the equilibrium distance between the satellites and the core vortex and g is 
a governing dimensionless positive parameter controlling the rate of vorticity leakage. 

The right-hand side of (7.2) is proportional to the sine of the angle between the 
satellites and the centre. It models the geometrical dependency of the exchanges 
described above. The second-order derivative accounts for the delay in a vorticity 
shred moving away from the saddle point, and thus to convey the effect onto the 
external strain, after the onset of the asymmetric exchange. Other quantities are for 
dimensional purposes. We define the dimensionless quantities 

A =  z2 + z1 - 22, exp (-$) , 
a 

and we linearize the equations with respect to the equilibrium, with A = A0 +A’,  
B = B‘ and C = C‘, yielding 

. 3  3 .  A’ + 1-A’ = -IB’ , 
4 2 

B’ = c , C’ = 2g1m[~’] . 

The characteristic equation of this system (for A’, B’, C’ K ept) is 

p(p3 + & p +  3g) = 0. 

(7.3) 

(7.4) 

This equation has complex roots with positive real parts for g > 0. Figure 18 
shows, for g = 0.05, the evolution of the distance of the two satellites to the core. 
The alternate pairing of the core with one of the satellites is clearly visible. This 
simple model demonstrates the mechanism of instability by asymmetric exchanges of 
vorticity patches across the saddle nodes. Its main weakness lies in the representation 
of separation delay by a the second-order derivative in (7.2). We have seen that, 
in reality, instability is observed after a small but finite amount of vorticity has 
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FIGURE 18. Evolution of the distances of the two satellites to the core vortex in the instability 
of the modified point-vortex model. Solid line : ial(t)l. Dotted line: laz(t)l. Initial positions : 
al(0) = -1 + 0.05(1 + i) and az(0) = 1 + 0.05(1 + i) 

been transferred from the core vortex to the exterior of the tripole, which would 
corresponds to a given value of g in our idealized model. A more quantitative 
approach would require an explicit representation of the external ring of positive 
vorticity. 

8. Effect of a bottom topography or a free surface 
The dynamics so far described does not depend on the sign of the core vortex. The 

equations are invariant if we invert the sign of the vorticity and velocity and apply a 
mirror symmetry with respect to, say, the x-axis. This symmetry is broken by adding 
a bottom axisymmetric parabolic orography r j  = -yor2 (the arbitrary constant has 
been omitted) which is also an idealization of the free surface in a rotating tank. 
Using the same procedure as above we integrate the equations starting from a vortex 
with either a cyclonic or an anticyclonic core and with r jo  = 0.1 (see figure 19). Notice 
that the initial linear instability is left unchanged by the orography. The nonlinear 
stage is, however, strongly modified and the resulting flow differs between the two 
cases. 

Figure 19(a) shows that a cyclonic core still yields a tripole according to the scenario 
detailed in previous sections. The main differences are a longer linear phase and a 
more compact final distribution, where the satellites get closer to the core than they 
do in the absence of orography. The tumbling of the core is also reduced at the end 
of the saturation stage. 

Figure 19(b) shows that starting from an anticyclonic core leads to a very different 
situation in which the nonlinear amplification is able to tear the core vortex to a point 
where it breaks in two parts. These two parts then form two pairs with the satellites 
of opposite sign and move away (see figure 19c). 

These effects are due to the vertical stretching or compressing of the vorticity tubes 
entrained within the two satellites. The outward motion of the vorticity contained 
within the two satellites is accompanied by reinforcement when it is positive (for 
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FIGURE 19. (a )  Cyclonic core and 
t = 105(8.06~); ( h )  anticyclonic core and t = 105; (c) anticyclonic core and t = 120. Contour 
interval 0.05. 

Vorticity maps of the two experiments with orography. 

the anticyclonic core) and by weakening when it is negative (for the cyclonic core). 
The strain felt by the core vortex is thus intensified or reduced depending on the 
core polarity. In the anticyclonic case breaking may ensue, while in the cyclonic case 
saturation is easier to obtain and the tripole is stabilized. Similar effects were studied 
by Carnevale, Kloosterziel & van Heijst (1991). 

The experiment of Kloosterziel & van Heijst (1991) was performed in a rotating 
tank with a free surface. These authors found that a tripole could be easily generated 
with an initial cyclonic core, while with an anticyclonic core the-vortex broke into 
two dipoles moving apart. This asymmetry does not seem, however, due to the 
free surface effect. Using their parameters and velocity measurements, we find 
[ w 6.6(1 - r2/2)exp(-r2/2) and yo = 0.001r2. The free surface effect is thus two 
orders of magnitude less than in our numerical experiment, that is much too weak 
to account for the observed asymmetry. As already noticed by Kloosterziel & van 
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Heijst, the sensitivity of anticyclones to three-dimensional instabilities is more likely to 
explain the cyclonic preference in their case. It is, however, striking that the final stage 
of their experiment with an initial anticyclonic core, shown in their figure 5(c,d) ,  is 
very similar to our figure 19(h,c). As a tentative explanation, we may conjecture that 
the three-dimensional instability does not destroy completely the two-dimensional 
vortex but homogenizes its anticyclonic core. This situation brings the vortex towards 
a profile with steeper vorticity gradient or, equivalently, larger value of a which 
exhibits dipolar breaking. 

Finally, we list a series of observations made on the long timescale while varying 
only qo within the initial conditions and integrating up to t = 707. Here C and AC 
respectively denote the cases with cyclonic or anticyclonic core vortices. 

(i) If qo = 0.005 (resp. 0.02), C forms a tripole, strongly filaments and exhibits a 
slow growth of the disturbance with time, but does not break. AC also filaments and 
asymmetrically breaks at f = 607 (resp. 507). 

(ii) If q o  = 0.25, C forms a tripole, which strongly oscillates and filaments, before 
asymmetric breaking at t = 602. The final state shows five alternate poles on the 
same axis. 

(iii) If q o  = 0.5, the core vortex of C breaks at t = 82, and forms an inverted tripole 
after merging of the former satellites. The new satellites eventually merge to yield an 
asymmetric rotating dipole. 

(iv) Finally, if qo = 0.75, the core vortex of C breaks at t = 82. The two fragments 
do not immediately withdraw from the centre; they keep a figure-eight shape, and a 
transient quadrupole is formed. An inverted tripole is formed at t = 33r. 

Cyclones are therefore much more prone to form tripoles (direct or inverse) in the 
presence of a bottom relief than anticyclones which produce dipoles. The development 
of asymmetric instabilities from the interaction with topography has been recently 
observed in a rotating tank and modelled by G.J.F. van Heijst & O.U. Velasco-Fuentes 
(1993, personal communication). 

9. Conclusions 
The tripoles are now well-known features of two-dimensional vortex flows (the first 

observations date back to 1988). This study sheds new light on their generation from 
unstable shielded monopoles and on their decay in weakly dissipative conditions. One 
of the main reason to study such, apparently exotic, structures is that they reveal 
many of the basic mechanisms of vortex dynamics. 

The first stage of the development of the small-amplitude perturbation is well 
described by the linear theory. The instability of our family of continuous profile has 
been related to the properties of a more general family of piecewise uniform profiles 
with two parameters. 

Two stages of nonlinear amplification and saturation follow. An attempt was made 
by Carton (1988) to derive an amplitude equation in the inviscid case. It  turned 
out that a Landau equation could not be obtained at third order of the expansion, 
as is usually the case, but required a fourth-order expansion which has not been 
performed. This difficulty could be related with the high level of nonlinearity of the 
saturation stage involving stripping of vorticity from the core vortex and wrapping 
of the resulting shreds around the satellites. Instead, we find here that a simple model 
based on the interaction between one ellipse and two point vortices is able to account 
for the saturation of the initial instability. The key parameter is the total angular 
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momentum of the vortex which must be large enough to allow the existence of 
the tripole. 

The stripping of vorticity filaments from the core vortex is easily interpreted by the 
existence of saddle points of the corotating stream function. A noticeable consequence 
is the generation of high vorticity gradients on the periphery of the core vortex. These 
saddle points are also involved in the decaying stage of the tripole: they maintain the 
sharp boundary of the core vortex and convey the vorticity leaking across it to the 
exterior of the tripole, the total leakage being controlled by the value of diffusion. 
The progressive reinforcement of the exterior ring leads to a situation where the 
tripole is unstable to perturbations breaking the symmetry with respect to the origin. 
This instability leads to an oscillatory behaviour with one dipole on one side and an 
isolated monopole on the other side, which periodically collide and exchange partners. 
This final stage is qualitatively analysed using a modified point-vortex model allowing 
transfers of vorticity between the satellites. 

This study also demonstrates the good correlation between numerical and lab- 
oratory experiments, as both have been historically simultaneous. For instance, 
asymmetric breaking is equally observed in rotating-tank experiments, by excitation 
of mode 8 = 1 with a parabolic free surface. A quantitative interpretation of the 
laboratory experiment is, however, made difficult by the absence of accurate data on 
the aisle of the velocity profile which is so important in determining the properties of 
the instability. 

In the presence of a moderate topographic effect, the saturation stage is strongly 
modified leading to the stabilization of tripoles with cyclonic cores and to the desta- 
bilization of tripoles with anticyclonic cores. We have just touched on the influence of 
strong topographic effects which seems to offer a large variety of phenomena. Notice, 
however, that the topographic effect is not sufficient to reproduce the experimental 
free-surface influence. Other mechanisms such as three-dimensional ageostrophic 
movements or boundary layer effects should be investigated. Bottom topography 
plays an essential role in the dynamics of real ocean vortices and is worth a complete 
investigation. Indeed, the only available observation of a tripole has been obtained in 
the Bay of Biscay (Pingree & LeCann 1992) as a result of the encounter of a coastal 
current with a trough and a cape. 

Finally, one may wonder about the existence of higher-order multipolar struc- 
tures beyond the tripole in two-dimensional incompressible flows. It has been re- 
cently established that one is very unlikely to observe long-lived structures which are 
more complex than quadrupoles (Carnevale & Kloosterziel 1994; Morel & Carton 
1994). 

It would be gratifying and profitable to find more occurrences of such structures 
in geophysical vortex flows. This raises the question of the free-decay assumption 
on which this study lies. Since tripoles have also been observed in forced two- 
dimensional turbulence and are known to exist as stationary solutions within a 
large-scale uniform strain (A. Dobritsyn, personal communication), their resistance 
to a stochastic mechanical forcing or to varying large-scale deformation fields (such 
as the planetary vorticity gradient or the influence of neighbouring intense currents) 
should be tested. 

Discussions with G.R. Flierl, J.C. McWilliams and G.J.F. van Heijst proved timely 
and valuable. The first author’s financial and computational support was provided 
by the Service Hydrographique & Ocianographique de la Marine under the PAMIR 
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research programme. The Centre de Calcul Vectoriel pour la Recherche has provided 
the computer resources used for high-resolution experiments. 

Appendix A. Stability of a uniform vorticity tripole 

without losing generality. The radial velocity profile V(r )  is given by 
We consider the uniform vorticity profile described in $3 .  We take here c = 1 

'I r 
O < r < a  V ( r ) = -  + '  

L I 
U2 

a < r < b V ( r )  = <, 

Assuming a perturbation stream function Re[cp(r) exp(ib(f3 - et))] with azimuthal 
wavenumber L and angular phase speed 2, the Rayleigh equation is: 

where Q(r )  is the piecewise uniform basic vorticity profile. Its solution is given here 
by 

o < r < a 
a < r < b 
b < r < 1 

1 < r 

cp(r) = air', 
q ( r )  = azr' + b2r-[, 
q ( r )  = a3rb + b3r-', 
q ( r )  = b / ,  

where the constants a,, b, are obtained by letting 4 be continuous over 0 < r < co 
and integrating (A2) across the discontinuities of Q(r ) .  We get the following set of 
relations : 

2Y 2Y u U ~ = U  ~ 2 + b 2 ,  

b2',2 + bz = b2'a3 + b3 , 
a3 + b3 = b4 , 

21 
/( - t)(a2'(az - u I )  - b2) = -U a1 , 

8 ( - ;;2 - c A) (b  2' '(a3 - UZ) + b2 - b3) = -q(b2'a3 + b3),  

-C2(b4 - b3 + ~ 3 )  = -qb4 

In order to admit non-trivial solutions, the determinant of the above system must 
vanish, yielding a dispersion relation for 2. When L = 2 and after some algebraic 
manipulations, we obtain 

64b4F3 - 16b2(2a2 + b2)P +4a2(2b2 -a4(1 + bz) +u2b2(2+ b2))i.+u8 -a4b2(b2 +2)  = 0 ,  

which is solved numerically. The resulting stability diagram is shown on figure 3. 
(A 3) 

Appendix B. Interior and exterior strain 
In order to separate the two components of the strain, we first notice that vorticity 

contours remain quasi-elliptical within the core region, as can be easily checked from 
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figure 1. We also observe that the ellipses stay aligned and that the eccentricity 0 
varies weakly within the core. Under these conditions, it can be shown (Legras & 
Dritschel 1991) that the internal component of the strain at the centre of the core 
is y i  = ~ O C O O  where COO is the vorticity at the centre. If, in addition, we know the 
orientation 4i of the core, the amplitude ye  and the orientation 4e of the external 
strain can be obtained by solving 

a2w 
- axay  y e  sin 2 4  - -(O) - yi sin 24i  , 

In practice B and 4j are computed from the moments M,, = JJ,x"y"dxdy of the 
domain D enclosed by the vorticity contour co = 0.6. We have 

[4M:, + (A420 + M02)2] 

M20 + M02 - 2 [M20M02 - M:,] 
B =  l >  

and 
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